If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-55y+600=0
a = 1; b = -55; c = +600;
Δ = b2-4ac
Δ = -552-4·1·600
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-55)-25}{2*1}=\frac{30}{2} =15 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-55)+25}{2*1}=\frac{80}{2} =40 $
| 7=w/2-4- | | -r-9=-4r | | 18j+18=-9(-2j-2) | | -8x=-56, | | 1/2(16-x)=-12x(x+7) | | 19.9m-19.82=19.9m | | 7=w/2–4- | | 50x+5=120 | | M-2=-10+5m | | -2.7u+4.12+19.1u=10.76+16.4u | | -7z-1=-8-6z | | 23÷4(8÷4)=x | | f=22/4 | | 1-4+9v=-3-9v | | 0.7(n-3)=n-0.6(n-5) | | 58(2x+10)=180 | | 7(3w-15)-18w=4(13w-14) | | 8q=28 | | 4+-1/4x+3=10 | | 7+10b=9b | | 5(2x+8)-9=12 | | -1+9r=10r-10 | | 5(2f-4)=-20+10f | | 3x−7−x+9=5 | | 10x-14-4x=-x | | 1/2z+1-z=-4 | | 4-g=-2g+10 | | b=63 | | 9x-6+5=6x-1+82=180 | | -18s+9(4s+11)=9(2s+17) | | 9x-6+5=6x-1+82 | | -9-2p=p |